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In the Earth’s magnetic field, it is possible to observe spin systems consisting of unlike spins that exhibit
strongly coupled second-order NMR spectra. Such spectra result when the J-coupling between two unlike
spins is of the same order of magnitude as the difference in their Larmor precession frequencies. Although
the analysis of second-order spectra involving only spin-½ nuclei has been discussed since the early days
of NMR spectroscopy, NMR spectra involving spin-½ nuclei and quadrupolar (I > ½) nuclei have rarely
been treated. Two examples are presented here, the tetrahydroborate anion, BH4

� , and the ammonium
cation, NH4

þ. For the tetrahydroborate anion, 1J(11B,1H) = 80.9 Hz, and in an Earth’s field of 53.3 lT,
m(1H) = 2269 Hz and m(11B) = 728 Hz. The 1H NMR spectra exhibit features that both first- and second-
order perturbation theory are unable to reproduce. On the other hand, second-order perturbation theory
adequately describes 1H NMR spectra of the ammonium anion, 14NH4

þ , where 1J(14N,1H) = 52.75 Hz when
m(1H) = 2269 Hz and m(14N) = 164 Hz. Contrary to an early report, we find that the 1H NMR spectra are
independent of the sign of 1J(14N,1H). Exact analysis of two-spin systems consisting of quadrupolar nuclei
and spin-½ nuclei are also discussed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Pioneering Earth’s field NMR (EFNMR) experiments were con-
ducted by several research groups in the 1950s and 1960s [1–9].
Recently, renewed interest in EFNMR has resulted from the devel-
opment of inexpensive pulse-FT spectrometers that are ideally sui-
ted for introducing students to the fundamentals of nuclear
magnetic resonance spectroscopy – spectral acquisitions, NMR
relaxation and spectral analysis. The advent of innovative signal
detection schemes, such as the use of super-conducting quantum
interference devices (SQUIDs) or atomic magnetometers for detect-
ing nuclear precession in microtesla fields [10–15], have also
added to the increased interest in NMR spectroscopy and imaging
at (or below) the Earth’s magnetic field.

EFNMR spectroscopy is made possible, in part, by the homoge-
neity of the Earth’s field which allows for absolute spectral resolu-
tion comparable or, in some cases, superior to those achieved using
modern super-conducting magnets [16,17]. However, in contrast
to super-conducting magnets, the Earth’s field is homogeneous
ll rights reserved.
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over sample sizes on the order of half a liter and so the weak nature
of this field can be partly obviated by the use of large samples.

The purpose of this article is to discuss some of the subtleties of
analyzing Earth’s field NMR spectra. While analysis of complex
spin-½ NMR spectra has been well developed for many years
[18], analysis of tightly coupled spin systems where one spin is a
quadrupolar nucleus (I > ½) while the other nuclei in the spin sys-
tem are spin-½ has not previously been discussed. Herein we pres-
ent two examples of such spin systems and demonstrate the
efficacy of perturbation theory for modeling and understanding
these systems. As well, we discuss the requirements for determin-
ing the signs of indirect spin–spin coupling constants in Earth’s
field NMR experiments.
2. Theory

2.1. Analysis of strong indirect spin–spin coupling in Earth’s field NMR

One of the distinguishing features of 1H NMR spectroscopy car-
ried out in the relatively weak Earth’s magnetic field (BE � 0.5 G or
50 lT) is the observation of strong indirect spin–spin coupling be-
tween heteronuclei. While the NMR spectra of tightly coupled nu-
clei of the same species, so-called AB spectra, are commonly
observed using high-field laboratory NMR spectrometers, the dif-
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ference in Larmor frequency between heteronuclei in super-con-
ducting magnets is such that the weak coupling condition is al-
ways satisfied for spin systems. Therefore, working in the Earth’s
magnetic field provides a unique opportunity to observe and ana-
lyze the spectra of tightly coupled nuclei of differing spin.

2.1.1. Perturbation theory
In 1956, W.A. Anderson used perturbation theory to derive

expressions which could be used to predict the form of tightly cou-
pled NMR spectra for systems of chemically non-equivalent spins
[19]. A pedagogical overview of the analysis of tightly coupled
NMR spectra using perturbation theory was presented by E.W. Gar-
bisch in 1968 [20–22]. Further detailed discussions of the applica-
tions of perturbation theory in NMR can be found in the classic text
by P.L. Corio [23].

Following the standard procedure for time-independent pertur-
bation theory, the full Hamiltonian is re-expressed in terms of an
unperturbed part, H0, and a perturbation, H1, where k is a dimen-
sionless quantity which takes a value between 0 and 1.

H ¼H0 þ kH1 ð1Þ

In the approach of Anderson the unperturbed Hamiltonian, H0,
is taken to be the Zeeman Hamiltonian, as shown in Eq. (2), where
c is the magnetogyric ratio. Note that in this paper we express all
Hamiltonians in units of angular frequency.

H0 ¼ �
X

R

cRBEIzR ð2Þ

The summation in Eq. (2) is performed over all of the groups of
magnetically equivalent nuclei within the spin system. Note that IR

is the total angular momentum operator resulting from the vector
coupling of the spins within the group denoted by the subscript R.
Therefore IzR is the vector sum of the z components of the angular
momentum operators for each of the NR magnetically equivalent R
group spins.

IzR ¼
XNR

S¼1

IzS

The unperturbed eigenfunctions are written as the product of
the individual kets, jIRmRi, for each group of magnetically equiva-
lent spins using the product operator formalism.

No chemical shift term is included in Eq. (2) because, except in
a few unusual cases [24], chemical shifts are vanishingly small in
the Earth’s field. Also it is important to note that this approach
does not take into account the possibility of chemically equiva-
lent but magnetically non-equivalent nuclei and therefore, in
the Earth’s magnetic field, this approach only applies to heteronu-
clear indirect spin–spin coupling. To include the effects of chem-
ically equivalent but magnetically non-equivalent nuclei, the
secular terms of the indirect spin–spin coupling Hamiltonian
must be included in the unperturbed Hamiltonian as demon-
strated by Hecht [25].

The perturbation, H1, is given by the Hamiltonian for heteronu-
clear indirect spin–spin coupling (Eq. (3)), where JRS is the coupling
constant, in frequency units, between the R and S groups of mag-
netically equivalent spins.

H1 ¼
X

R

X
S>R

2pJRSIR � IS

¼
X

R

X
S>R

2pJRS IzRIzS þ
1
2

IþR I�S þ I�R IþS
� �� �

ð3Þ

Notice that Eq. (3) differs from the corresponding expression of
Anderson [19] by our inclusion of the I�R IþS term and the ½ factor.

In Appendix II of Ref. [19] Anderson derived expressions for the
first-, second- and third-order perturbation energies. However, we
found that Anderson’s expression for the third-order term is incon-
sistent with spectra calculated numerically using density matrix
theory. In Eq. (4) we present terms for the perturbation energies
(in angular frequency units) which we have derived up to third-
order.

E0ðIA;mA; IB;mB:::Þ ¼ �
X

R

xRmR

Eð1ÞðIA;mA; IB;mB:::Þ ¼ 2p
X

R

X
S>R

JRSmRmS

Eð2ÞðIA;mA; IB;mB:::Þ ¼ �4p2
X

R

X
S>R

J2
RS

2ðxR �xSÞ

mR I2
S þ IS �m2

S

� �
�mS I2

R þ IR �m2
R

� �h i

Eð3ÞðIA;mA;IB;mB:::Þ¼�8p3
X

R

X
S>R

J3
RS

2ðxR�xSÞ2
½FðRÞFðSÞ

þFðRÞmSð1�mSþmRÞþFðSÞmRð1�mRþmSÞ�

þ8p3
X

R

X
S>R

X
T>S

JRSJRT JST

ðxR�xSÞðxR�xTÞðxS�xTÞ

�
mSmT FðRÞðxS�xTÞ
�mRmT FðSÞðxR�xTÞ
þmRmSFðTÞðxR�xSÞ

2
64

3
75 ð4Þ

where

xR ¼ cRBE

FðRÞ ¼ IRðIR þ 1Þ �mRðmR þ 1Þ

Note that the energy terms in Eq. (4) are calculated for an arbi-
trary number of groups of magnetically equivalent heteronuclei
and the summations over R, S, and, in the case of the third-order
energy, T, are carried out such that the coupling between two
groups of spins is only counted once.

For the spectra calculated using perturbation theory in this pa-
per, the transition probabilities for the various 1H transitions were
not explicitly calculated. When comparing observed and calculated
spectra, we consider only peak frequencies, not peak integrals or
heights. Calculations of transition probabilities can be found else-
where [23,25,26].
2.1.2. Comparison of perturbation theory and exact calculations
In this paper we consider the case of a group of spin-½ nuclei

(e.g., four 1H’s) coupled to a quadrupolar nucleus such as 14N
(I = 1), 10B (I = 3) or 11B (I = 3/2). In order to determine the valid-
ity of the perturbation theory approach to modeling this prob-
lem we first consider a simple two-spin case, which can be
solved exactly through diagonalization of the full Hamiltonian
[18,23,27], and compare the resultant exact transition frequen-
cies with those given by first-, second- and third-order perturba-
tion theory.

The results for the case of a single 1H coupled to a single 11B in
the Earth’s magnetic field of 54 lT are presented in Fig. 1. The dif-
ference between the exact 1H transition frequencies (of which
there are four in this case) and the transition frequencies calcu-
lated from first-order (short dashed line), second-order (long
dashed line) and third-order (solid line) perturbation theory is
shown as a function of the indirect spin–spin coupling constant
between the I = 1/2 and I = 3/2 nuclei. Note that two of the
first-order transition frequencies coincide and so only three
first-order transitions are apparent. In addition, one of the sec-
ond-order transition frequencies is exactly equal to one of the
third-order transition frequencies and so is entirely obscured. 1J



Fig. 1. The difference between the exact 1H transition frequencies and those
predicted by first-order (short dashed line) second-order (long dashed line) and
third-order (solid line) perturbation theory as a function of the relative strength of
the indirect spin–spin coupling constant for a single 1H nucleus coupled to a single
11B nucleus in a field of 54 lT. The indirect spin–spin coupling constant is expressed
as a fraction of the difference in Larmor frequency between the 1H (2299 Hz) and
11B (738 Hz) nuclei. The shaded area highlights the range of unobservable frequency
differences which are less than the target resolution of the experiment (0.1 Hz).
Using this target resolution as a guide, the plot is divided into the regions A, B and C
in which first-, second- and third-order perturbation theory (respectively) can be
used to accurately model the spin system. The indirect spin–spin coupling constant
1J(1H,11B) = 80.9 Hz of NaBH4 falls within the third-order region in a field of 54 lT.
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(1H,11B) is expressed as a fraction of the difference between the
Larmor frequency of the protons (2299 Hz) and that of the 11B nu-
cleus (738 Hz) at 54 lT. The shaded area in Fig. 1 indicates the
range of frequency differences which are unobservable in an
experimental spectrum, assuming an experimental resolution of
0.1 Hz. Using this region as a guide, we can define values of J
for which (A) first-order, (B) second-order, and (C) third-order
perturbation theory accurately models the observed spectrum.
These regions are labeled accordingly in Fig. 1.

For the NaBH4 sample examined in the experimental portion of
this paper, the indirect spin–spin coupling constant between 11B
and 1H (80.9 Hz) is approximately 5.2% of the difference in Larmor
frequency between 11B and 1H nuclei in a field of 54 lT. Therefore
it is expected that this spectrum will be well characterized by
third-order perturbation theory.

While the two-spin example is informative, it does not fully
illustrate the effect of the second- and third-order energy contribu-
tions for an ABn spectrum where n > 1 and A is a quadrupolar (I > ½)
nucleus. Due to the complexity involved in obtaining closed form
analytical solutions to the Schrödinger equation for large spin sys-
tems under the influence of strong indirect spin–spin coupling, we
use numerical simulations to calculate the exact spectra for the
case of more than two spins and compare these results with per-
turbation theory.

Exact spectra of strongly coupled spin systems in the Earth’s
magnetic field can be numerically simulated using a number of
mathematical tools. In this paper we use a density matrix and
product operator approach [26,28–30]. The density matrix formal-
ism provides a convenient way to describe the statistical state of
the coupled spin system and to evolve this system as a function
of time under the influence of the full interaction Hamiltonian.

We start the numerical simulation, at time t = 0, with the den-
sity matrix at thermal equilibrium, q(0). We can numerically sim-
ulate the excitation pulse through the use of a rotation operator
about x, Rx(h). Rx(h) is a product operator which only acts on the
spins in the system that we wish to excite, i.e., the 1H nuclei. Fol-
lowing the excitation pulse, the system is allowed to evolve with
time according to an evolution operator, U(t), where the full inter-
action Hamiltonian, H, is the sum of H0 (Eq. (2)) and H1 (Eq. (3)).
Indirect spin–spin coupling in the Earth’s magnetic field does not,
in general, satisfy the weak coupling condition and so the full Ham-
iltonian, not just the secular terms, must be used. The evolution
operator is evaluated as a Taylor expansion calculated to a fixed or-
der, O (Eq. (5)).

UðDtÞ �
XO

n¼0

ð�1Þnin

n!
HnDtn ¼ 1� iHDt � 1

2
HHDt2 þ ::: ð5Þ

The evolution time step, Dt, and the order of the Taylor expan-
sion, O, in Eq. (5) must be chosen such that the error associated
with the truncation of the Taylor Series is much less than 1. The
dimensionless error for a single application of the evolution oper-
ator is on the order of ðDxDtÞO

O!
, where Dx is the bandwidth, in angu-

lar frequency, of the calculated spectrum. This error is additive
with each application of the evolution operator and so over the
course of the simulation the cumulative error becomes
Err � 2pNpts

ðDxDtÞO�1

O!
, where Npts is the total number of spectral

points spanning Dx. For the numerically simulated NMR spectra
presented in this paper an order of O = 28 and evolution time steps
on the order of a hundred ls were used to simulate spectra with
Npts = 32,768. This gives rise to an error of 10�11. The evolution
operator is calculated only once at the start of the numerical sim-
ulation and so using a large value of O does not carry a significant
computational time penalty.

As the system evolves, we need to periodically observe the NMR
signal at a fixed sampling time, Dt2. Dt2 can take any value which is
an integer multiple of the evolution time Dt. The density matrix at
t = Dt2 is defined by Eq. (6), where q(0+) denotes the density matrix
immediately following the excitation pulse and the evolution oper-
ator, U(Dt) is applied m times, where m ¼ Dt2

Dt .

qðDt2Þ ¼ UðDtÞ:::UðDtÞqð0þÞUyðDtÞ:::UyðDtÞ ð6Þ

Observation of the system is achieved through the use of an
observation operator as illustrated in Eq. (7).

SðDt2Þ ¼ hIobsi ¼ TrðIobsqðDt2ÞÞ ð7Þ

The observation operator for the detection of nuclear precession
in NMR is defined by Eq. (8), where the sum is evaluated for each of
the N observed nuclei in the system.

Iobs ¼
XN

n¼1

ðIxn þ iIynÞ ð8Þ

In Fig. 2 we present 1H NMR spectra calculated from perturba-
tion theory and using a density matrix numerical simulation for
11B1H4

� acquired in a field of 54 lT with an indirect spin–spin cou-
pling constant of 1J(11B,1H) = 80.3 Hz. The spectrum calculated
from first-order perturbation theory (Fig. 2a) contains four lines,
separated by 1J(11B,1H), which correspond to the four spin states
of the 11B nucleus (m = +3/2, +1/2, �1/2 and �3/2). This is the form
of the 1H NMR spectrum of 11B1H4

� in the high-field case, where
the spins are weakly coupled and so the presence of a plurality
of magnetically equivalent protons has no observed effect on the
spectrum.

In the case of second-order perturbation theory (Fig. 2b) the
complexity of the calculated spectrum is dramatically increased,
with each of the four first-order peaks further split into quartets.
It is also interesting to note that in the spectrum calculated with
second-order perturbation theory the four multiplets are shifted
to a slightly higher frequency, relative to the first-order perturba-
tion theory peaks, and are no longer equally spaced. The additional
peak multiplicity is due to the presence of the four magnetically
equivalent protons coupled to the 11B nucleus. This multiplicity
in tightly coupled heteronuclear systems has previously been ob-
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Fig. 2. Calculated 1H NMR spectra of 11B1H4
� in a field of 54 lT with

1J(11B,1H) = 80.3 Hz using: (a) first-order perturbation theory, (b) second-order
perturbation theory, (c) third-order perturbation theory and (d) a numerical
simulation based on density matrix theory.
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served in the Earth’s magnetic field in strongly coupled 13C–1H sys-
tems [31].

Second-order perturbation theory does not capture the full 6-
fold multiplicity predicted for this system by the vector model of
Appelt et al. [32]. According to this model, if we consider one of
the four protons as the observed proton, the expected multiplicity
is explained by the total angular momentum states of the remain-
ing three protons. The total angular momentum quantum number
of these spins can have a value of I = 3/2 or I = 1/2 with correspond-
ing azimuthal quantum numbers of m = 3/2, 1/2, �1/2, �3/2 and
m = 1/2, �1/2. To second-order the states: I = 3/2, m = 1/2 and
I = 1/2, m = 1/2 as well as the states: I = 3/2, m = �1/2 and I = 1/2,
m = �1/2 are degenerate and so only four lines are observed in-
stead of the full six.

In the spectrum calculated using third-order perturbation the-
ory (Fig. 2c) the full 6-fold multiplicity of the four sets of multiples
is observed. The most striking feature of this spectrum is the strong
asymmetry associated with this splitting of these multiplets. In
this tightly coupled regime, the second multiplet collapses to what
would, at a resolution of 0.5 Hz, appear to be a singlet. In the per-
turbation theory calculation there are six distinct transition fre-
quencies associated with this multiplet but the splitting is very
small and difficult to observe at the resolution (0.16 Hz) of the cal-
culated spectrum.

Comparison of the calculated perturbation theory spectra
(Fig. 2a–c) with the spectrum calculated using a density matrix
simulation (Fig. 2d) illustrates, definitively, that a third-order per-
turbation theory calculation is necessary to accurately model this
system. A fourth-order term was calculated and compared with
the density matrix simulation. While the transition frequencies
calculated from fourth-order perturbation theory provide better
agreement with those of the density matrix simulation, the
fourth-order contribution is very small and no significant differ-
ence in the overall characteristics of the spectrum is observed be-
tween third- and fourth-order. Therefore we conclude that, in this
case, the addition of the fourth-order term is not particularly
informative.

2.2. Determining the sign of indirect spin–spin coupling constants in
EFNMR

At the Colloque Ampère XIV in 1967, Georges-J. Béné showed a
portion of a frequency domain 1H NMR spectrum of NH4NO3 ac-
quired in the Earth’s magnetic field and suggested that with im-
proved resolution one could deduce the sign of 1J(14N,1H) based
on corrections to frequencies calculated using third-order pertur-
bation theory [2]. However, numerical simulations of the 1H
NMR spectrum of a strongly coupled 14N1H4

þ spin system in the
Earth’s magnetic field using density matrix theory show that the
form of this spectrum is independent of the absolute sign of
1J(14N,1H).

We believe that this misconception came about because of an
unfortunate error in Anderson’s original expression for the third-
order perturbation energy (Appendix II in Ref. [19]). NMR spectra
calculated from this third-order energy term exhibit spectral fea-
tures which are dependent on the absolute sign of 1J(A,B) for
strongly coupled ABn systems, where n > 1, A is a quadrupolar
(I > ½) nucleus and B is the observed spin-½ nucleus. For example,
in the case of the 11B1H4

� system discussed above, the asymmetry
of the splitting of the four multiplets depends on the sign of J if
the spectrum is calculated using Anderson’s expression for the
third-order perturbation energy. However, density matrix simula-
tions show that the form of this spectrum is independent of the
sign of J and 1H EFNMR spectra of this system calculated using
the third-order perturbation energy terms presented in Eq. (4)
are also independent of the sign of J. Indeed we find that third-or-
der perturbation theory, or for that matter exact analysis, will not
yield the sign of any indirect spin–spin coupling constant in an
AmBn spin system regardless of the spin of nucleus ‘‘A” and nu-
cleus ‘‘B”.

This is further illustrated by considering the exact expressions
for the transition frequencies of the coupled two-spin (11B1H) sys-
tem considered in Fig. 1. Closed form expressions for the four al-
lowed 1H transitions of this system are presented in Eq. (9),
where mB and mH are the Larmor frequencies of the 11B and 1H nu-
clei, respectively.
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T1 ¼
1
2
mB þ

1
2
mH þ J þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH � mBÞ2 þ 2JðmH � mBÞ þ 4J2

q

T2 ¼
1
2
mB þ

1
2
mH � J þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH � mBÞ2 � 2JðmH � mBÞ þ 4J2

q

T3 ¼ mB þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH � mBÞ2 þ 4J2

q
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH � mBÞ2 � 2JðmH � mBÞ þ 4J2

q

T4 ¼ mB þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH � mBÞ2 þ 4J2

q
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH � mBÞ2 þ 2JðmH � mBÞ þ 4J2

q

ð9Þ

Inspection of Eq. (9) shows that T1(�J) = T2(J) and T3(�J) = T4(J).
Therefore a change in the sign of J will have no observable effect on
the spectrum regardless of the relative strength of J and (mH � mB).

A theorem which states that the NMR spectrum of any two
spins, A and B, coupled via an indirect spin–spin coupling constant,
1J(A,B), is invariant under the transformation 1J(A,B) ? �1J(A,B) is
proved by P.L. Corio in his book on high resolution NMR spectra
published in 1967 [23]. The absolute sign of J between two coupled
spins can be determined using NMR if the two coupled spins are
subject to additional interactions, such as weak residual dipolar
coupling in an aligned medium [33].

The relative signs of J in tightly coupled systems of more than
two groups of nuclei can be determined through comparison of ob-
served and calculated EFNMR spectra. This application was dis-
cussed by Béné in his review of EFNMR in 1980 [34].

3. Results and discussion

Consider the 1H NMR spectrum of an aqueous solution of
ammonium nitrate. In the Earth’s magnetic field, this spin system
is an AB4 spin system where A = 14N with a nuclear spin I = 1 and
the B spins are four magnetically equivalent 1H nuclei. In this case
the natural abundance of 14N and 1H (99.6% and 99.9%, respec-
tively) is such that no other isotopes of N and H need to be consid-
ered. This particular spin system was first investigated in the
Earth’s field by Brown and Thompson [6] who analyzed the free-
induction decay and compared the observed frequency compo-
nents with the spectrum calculated using second-order perturba-
tion theory. The indirect spin–spin coupling of 14N1H4

þ was
studied at high-field by Wasylishen and Friedrich in 1983 [35].

Fig. 3 presents a 1H EFNMR spectrum acquired for a 500 mL
aqueous solution of 8 M NH4NO3 and 2 M HCl. This spectrum
was acquired using 49 scans in a total experiment time of
12 min. Below the experimental spectrum is a 1H NMR spectrum
calculated using second-order perturbation theory with
1J(14N,1H) = 52.75 Hz, BE = 53.3 lT and a line broadening of
0.16 Hz. In this case 1J(14N,1H) is 2.5% of the difference in Larmor
frequency between 14N and 1H (2105 Hz). A portion of a 1H NMR
spectrum of NH4NO3 acquired in the Earth’s magnetic field was
2220 2240 2260
frequenc

Fig. 3. 1H NMR spectrum of 500 mL 8 M NH4NO3 in 2 M HCl. The spectrum was acquired
is split into a dominant component which represents the solvent protons and a weaker co
of the 14N nucleus. Below the experimental spectrum is a spectrum calculated from secon
agreement between the experimental and the calculated spectra is observed.
previously presented, in 1967, by Georges-J. Béné [2]. The spec-
trum presented in Fig. 3 is of comparable quality to this previously
reported result.

By inspection, we see that the features of the 1H NMR spectrum
of the ammonium ion are well characterized by second-order per-
turbation theory. The central peak is split into a dominant compo-
nent at 2269.5 Hz, which corresponds to the solvent protons, and a
weaker component, shifted to slightly higher frequency, which cor-
responds to the spin state m = 0 of the 14N nucleus in the 14N1H4

þ

ion. The two multiplets, which correspond to the m = ±1 spin states
of the 14N nucleus, consist of four peaks and are not symmetric
about the central peak but rather are shifted to slightly higher fre-
quencies relative to the expected first-order peak positions of
mY ± J, where mY is the proton Larmor frequency.

Now we consider the case of the BH4
� anion, studied previously

at high-field by Smith et al. [36]. An experimental 1H Earth’s Field
NMR spectrum of the borohydride anion in an aqueous solution of
sodium borohydride and sodium hydroxide is presented in Fig. 4.
In this case we focus our attention on two different species:
11BH4

� where 11B has a nuclear spin of I = 3/2 and a natural abun-
dance of approximately 80% and 10BH4

� where 10B has a nuclear
spin of I = 3 and a natural abundance of approximately 20%. Prior
to taking the magnitude of the spectrum in Fig. 4, a complex
Lorentzian line, centered about 2269.4 Hz and with a 1.1 Hz line-
width, was subtracted from the complex experimental spectrum
to suppress the dominant peak corresponding to the solvent pro-
tons so that all of the BH4

� multiplets could be easily identified
in the magnitude spectrum. The central peak in the resultant spec-
trum is the unsuppressed portion of this solvent proton peak. Due
to imperfections in the B1 transceiver coil, the spectrum could not
be correctly phased over the full bandwidth. Portions of the real
spectrum, which have been phased locally, are shown in the insets
to Fig. 4 to illustrate the spectral resolution available in the com-
plex spectrum.

Below the experimental spectrum of the tetrahydroborate ion is
a the spectrum calculated from third-order perturbation theory
with 1J(11B,1H) = 80.9 Hz, 1J(10B,1H) = 27. 1 Hz, BE = 53.3 lT and a
linewidth of 0.16 Hz, where the contributions from 11BH4

� and
10BH4

� are weighted by 80% and 20%, respectively. As explored in
the theory section of this paper, the 11B1H4

� portion of the spec-
trum, whose indirect spin–spin coupling constant is 5.2% of the dif-
ference in Larmor frequency between 1H and 11B, is well
characterized by third-order perturbation theory, with four multi-
plets whose splittings are strongly dependent on the spin state of
the 11B nucleus. T2 broadening gives the multiplet at 2235 Hz the
appearance of a singlet; however the linewidth of this peak is con-
sistent with the splitting of the multiplet predicted by third-order
perturbation theory. The contribution from the 10BH4

� anion is a
set of seven multiplets, where the central multiplet is largely ob-
2280
y (Hz)

2300 2320

with 49 averages in a total experiment time of 12 min. The central peak at 2269.5 Hz
mponent, shifted to slightly a higher frequency, which corresponds to the m = 0 state
d-order perturbation theory using 1J(14N,1H) = 52.75 Hz and BE = 53.3 lT. Very good
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Fig. 4. 1H NMR spectrum of 500 mL 4.5 M NaBH4 in 8 M NaOH. The spectrum was acquired with 4098 averages in a total experiment time of 14 h. Prior to taking the
magnitude of the spectrum a complex Lorentzian line centered about 2269.4 Hz with a 1.1 Hz linewidth was subtracted from the experimental spectrum to suppress the
dominant peak corresponding to the solvent protons. The central peak in the resultant spectrum is the unsuppressed portion of this solvent proton peak. Below
the experimental spectrum is a spectrum calculated from third-order perturbation theory using 1J(11B,1H) = 80.9 Hz, 1J(10B,1H) = 27. 1 Hz and BE = 53.3 lT, where the
contributions from 11BH4

� and 10BH4
� are weighted by 80% and 20%, respectively. A line broadening of 0.16 Hz was added to the calculated spectrum. The insets correspond

to three regions of the real spectrum which have been phased locally. Due to imperfections in the transceiver coil a significant phase roll is present over the full spectral width
and so the complex spectrum can only be phased locally.
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scured by the solvent peak. Under the conditions of this experi-
mental spectrum, 1J(10B,1H) is only 1.3% of the difference in Larmor
frequency between 10B (243.8 Hz) and 1H (2269.4 Hz) and so it is
anticipated that second-order perturbation theory would be suffi-
cient to describe this portion of the spectrum. While the resolution
of the experimental spectrum is insufficient to resolve individual
peaks within the seven multiplets, the width of these peaks corre-
sponds well with the width of the multiplets calculated using
third-order perturbation theory.

4. Conclusions

In this paper we have investigated the unique opportunity pre-
sented by high-resolution Earth’s field NMR spectroscopy to ob-
serve tightly coupled systems of nuclei with differing spin. The
utility of second- and third-order perturbation theory for predict-
ing the form of the EFNMR spectra of these tightly coupled systems
was demonstrated for the case of protons coupled to 14N (I = 1), 11B
(I = 3/2) and 10B (I = 3) nuclei. In addition, we have shown that the
use of perturbation theory to describe second- and third-order
EFNMR spectra can promote a better understanding of the connec-
tion between various spectral features and the underlying quan-
tum mechanical states of the system. We have also noted that
Earth’s field NMR spectra alone cannot be used to determine the
absolute sign of indirect spin–spin coupling constants in systems
with only two groups of magnetically equivalent spins, regardless
of the spin of the constituent nuclei or the relative strength of the
indirect spin–spin coupling between them.

5. Experimental

All experiments were implemented, both at the University of
Alberta and Victoria University of Wellington, on a Magritek Terra-
nova-MRI Earth’s field system (Magritek Ltd., Wellington, New
Zealand) located in a laboratory environment. The pulse sequence
used was a simple prepolarize, pulse and collect experiment. Pre-
polarization was achieved using the standard Terranova-MRI pre-
polarization electromagnet which provides a field of 18.7 mT at a
maximum current of 6 A. Polarization times, on the order of sec-
onds, were chosen to be twice the T1 of the sample up to a maxi-
mum of 6 s. Following an adiabatic switch-off of the pre-
polarization field, an ultra-low frequency (ULF) excitation pulse
was applied for 1.4 ms and the subsequent free-induction decay
was recorded. During the multi-scan experiments, temporal varia-
tions in the Earth’s field were tracked by observing any shifts in the
dominant peaks of the 1H EFNMR spectrum. A calibrated B0 lock
coil within the EFNMR probe was used to counter any observed
field drift and thus maintain a constant static B0 field throughout.
A 10 mm thick copper box was used as a Faraday shield to screen
ultra-low frequency interference. A delay of 300 ms was intro-
duced between the prepolarization pulse and the B1 excitation
pulse in order to avoid any degradation of field homogeneity due
to eddy currents induced in the copper box by the switching of
the prepolarization field. Details of the experimental apparatus
and pulse sequence can be found in [37].

The density matrix simulations and perturbation theory calcu-
lations were carried out using the Prospa v2.1 software package
(Magritek Ltd., Wellington, New Zealand).

Samples used include: 500 mL of 8 M NH4NO3 in 2 M HCl and
500 mL of 4.5 M NaBH4 in 8 M NaOH. All chemicals were pur-
chased from Sigma–Aldrich (USA).
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